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a b s t r a c t

It has been known that every planar 4-graph has a 2-bend 2-D orthogonal drawing, with
the only exception being the octahedron, every planar 3-graph has a 1-bend 2-D orthogonal
drawingwith the only exception being K4, and every outerplanar 3-graphwith no triangles
has a 0-bend 2-D orthogonal drawing. We show in this paper that every series-parallel 4-
graph has a 1-bend 2-D orthogonal drawing.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider the problemof generating orthogonal drawings of graphs in the plane. The problemhas obvious applications
in the design of VLSI circuits and optoelectronic integrated systems: see for example [7,10].
Throughout this paper, we consider simple connected graphs G with vertex set V (G) and edge set E(G). We denote by

dG(v) the degree of a vertex v in G, and by ∆(G) the maximum degree of vertices of G. G is called a k-graph if ∆(G) ≤ k. A
graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing of a
planar graph G is called a 2-D drawing of G. A 2-D orthogonal drawing of a planar graph G is a 2-D drawing of G such that each
edge is drawn by a sequence of contiguous horizontal and vertical line segments. Notice that a graph G has a 2-D orthogonal
drawing only if∆(G) ≤ 4. A 2-D orthogonal drawing with no more than b bends per edge is called a b-bend 2-D orthogonal
drawing.
Biedl and Kant [1], and Liu, Morgana, and Simeone [5] showed that every planar 4-graph has a 2-bend 2-D orthogonal

drawing, with the only exception being the octahedron shown in Fig. 1(a), which has a 3-bend 2-D orthogonal drawing, as
shown in Fig. 1(b). Moreover, Kant [4] showed that every planar 3-graph has a 1-bend 2-D orthogonal drawing with the
only exception being K4 shown in Fig. 1(c), which has a 2-bend 2-D orthogonal drawing, as shown in Fig. 1(d). Zhou and
Nishizeki [11] showed a linear time algorithm to generate a 1-bend 2-D orthogonal drawing for a series-parallel 3-graph.
Nomura, Tayu, and Ueno [6] showed that every outerplanar 3-graph has a 0-bend 2-D orthogonal drawing if and only if
it contains no triangle as a subgraph. On the other hand, Garg and Tamassia proved that it is N P -complete to decide if a
given planar 4-graph has a 0-bend 2-D orthogonal drawing [3]. Di Battista, Liotta, and Vargiu showed that the problem can
be solved in polynomial time for planar 3-graphs and series-parallel graphs [2]. Rahman, Egi, and Nishizeki [8] showed that
the problem can be solved in linear time for series-parallel 3-graphs.
We show in this paper the following theorem.

Theorem 1. Every series-parallel 4-graph has a 1-bend 2-D orthogonal drawing. �
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(a) Octahedron. (b) 3-bend 2-D
orthogonal drawing of
octahedron.

(c) K4 . (d) 2-bend 2-D
orthogonal
drawing of K4 .

Fig. 1. Octahedron, K4 , and their 2-D orthogonal drawings.

(a)Λ1 . (b)Λ′1 .

Fig. 2. Shape-equivalent polygonsΛ1 andΛ′1 .

The proof of Theorem 1 is constructive and provides a polynomial-time algorithm to generate such a drawing for a series-
parallel 4-graph.

2. Preliminaries

A series-parallel graph is defined recursively as follows.
(1) A graph consisting of two vertices joined by a single edge is a series-parallel graph. The vertices are the terminals.
(2) If G1 is a series-parallel graph with terminals s1 and t1, and G2 is a series-parallel graph with terminals s2 and t2, then a
graph G obtained by either of the following operations is also a series-parallel graph:
(i) Series-composition: identify t1 with s2. Vertices s1 and t2 are the terminals of G.
(ii) Parallel-composition: identify s1 and s2 into a vertex s, and t1 and t2 into t . Vertices s and t are the terminals of G.

A series-parallel graph G is naturally associated with a binary tree T (G), which is called a decomposition tree of G. The
nodes of T (G) are of three types, S-nodes, P-nodes, and Q -nodes. T (G) is defined recursively as follows:
(1) If G is a single edge, then T (G) consists of a single Q -node.
(2-i) If G is obtained from series-parallel graphs G1 and G2 by the series-composition, then the root of T (G) is an S-node,

and T (G) has subtrees T (G1) and T (G2) rooted at the children of the root of G.
(2-ii) If G is obtained from series-parallel graphs G1 and G2 by the parallel-composition, then the root of T (G) is a P-node,

and T (G) has subtrees T (G1) and T (G2) rooted at the children of the root of G.

Notice that the leaves of T (G) are the Q -nodes, and an internal node of T (G) is either an S-node or P-node. Notice, also,
that every P-node has at most one Q -node as a child, since G is a simple graph. If G has n vertices then T (G) hasO(n) nodes,
and T (G) can be constructed inO(n) time [9]. It should be noted that the decomposition tree defined here is slightly different
from the well-known SPQ-tree for a series-parallel graph.
A polygon is said to be rectilinear if every edge of the polygon is parallel to the horizontal or the vertical axes. LetΛ and

Λ′ be rectilinear polygons with distinguished vertices σ and σ ′, respectively. Λ and Λ′ are said to be shape-equivalent if
walking clockwise around Λ and Λ′ from σ and σ ′, respectively, we have the same sequence of left and right turns for Λ
and Λ′. Fig. 2 shows shape-equivalent rectilinear polygons Λ1 and Λ′1 whose corresponding sequence is (L, R, R, R, R, L),
where L and R denote left and right turns, respectively.
Let Λ be a rectilinear polygon with distinguished vertices σ and τ , and Λ′ be a rectilinear polygon with distinguished

vertices σ ′ and τ ′. Λ and Λ′ are shape-equivalent if walking clockwise around Λ and Λ′ from σ and σ ′, respectively, we
have the same sequence of left turns, right turns, and the direction (left turn, right turn, or go straight) at τ and τ ′ for
Λ and Λ′, respectively. Fig. 3 shows shape-equivalent rectilinear polygons Λ2 and Λ′2 whose corresponding sequence is
S = (L, R, R, R, L, F , L, R, R, R, L), where F denotes the direction of going straight at τ and τ ′. On the other hand, a rectilinear
polygon shown in Fig. 4 is not shape-equivalent to Λ2 or Λ′2, since the sequence (L, R, R, R, L, R

Ď, L, R, R, R, L) is different
from S, where RĎ denotes the right turn at τ ′′.
Any two rectilinear rectangles with no distinguished vertex are defined to be shape-equivalent.
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(a)Λ2 . (b)Λ′2 .

Fig. 3. Shape-equivalent polygonsΛ2 andΛ′2 containing τ and τ
′ , respectively.

Fig. 4. A polygon not shape-equivalent toΛ2 ,Λ′2 in Fig. 3.

(a)Σ1 . (b)Σ ′1 .

Fig. 5. Shape-equivalent regionsΣ1 andΣ ′1 .

(a)Σ2 . (b)Σ ′2 .

Fig. 6. Shape-equivalent regions bounded by two polygonsΣ2 andΣ ′2 .

LetΣ andΣ ′ be regions bounded by rectilinear polygonsΛ andΛ′, respectively.Σ andΣ ′ are said to be shape-equivalent
ifΛ andΛ′ are shape-equivalent. RegionsΣ1 andΣ ′1 shown in Fig. 5 are shape-equivalent, since bounding polygonsΛ1 and
Λ′1 are shape-equivalent, as seen in Fig. 2.
LetΛa andΛb be rectilinear polygons such thatΛa is enclosed byΛb, andΣ be a region bounded byΛa andΛb. LetΛ′a

and Λ′b be rectilinear polygons such that Λ
′
a is enclosed by Λ

′

b, and Σ
′ be a region bounded by Λ′a and Λ

′

b. Σ and Σ
′ are

shape-equivalent ifΛa andΛ′a are shape-equivalent, andΛb andΛ
′

b are shape-equivalent. RegionsΣ2 andΣ
′

2 shown in Fig. 6
are shape-equivalent since bounding polygonsΛ3 andΛ′3 are shape-equivalent, andΛ4 andΛ

′

4 are shape-equivalent.
A region is said to be rectilinear if it is bounded by rectilinear polygons.

3. Proof of Theorem 1

Let G be a series-parallel 4-graph with terminals s and t . We generate for G several 1-bend 2-D orthogonal drawings
in regions of distinct shapes depending on dG(s) and dG(t). Such a region is shape-equivalent to a rectilinear region
Π(dG(s), dG(t))i [Π(dG(t), dG(s))i] shown in Fig. 7 for some integer i, if dG(s) ≤ dG(t) [dG(t) ≤ dG(s)]. A region Π(d1, d2)i
is also referred to asΠ(d2, d1)i. The number ν(dG(s), dG(t)) of distinct shapes is no more than 4 for every pair of dG(s) and
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Fig. 7. Regions.

(a) N1-drawing. (b) N2-drawing.

Fig. 8. N-drawings of an edge.

dG(t). More precisely, ν(dG(s), dG(t)), dG(s) ≤ dG(t), is: 3 if dG(s) = dG(t) = 1; 4 if dG(s) = 1 and dG(t) = 2; 2 if dG(s) = 1
and dG(t) = 3; 1 if dG(s) = 1 and dG(t) = 4; 2 if dG(s) = dG(t) = 2; 2 if dG(s) = 2 and dG(t) = 3; 1 if dG(s) = 2 and
dG(t) = 4; 2 if dG(s) = dG(t) = 3; 1 if dG(s) = 3 and dG(t) = 4; 1 if dG(s) = dG(t) = 4, as seen in Fig. 7.
Let Σ be a rectilinear region with distinguished vertices σ and τ . A 1-bend 2-D orthogonal drawing of G in Σ is

called an N-drawing of G generated in Σ if s is mapped to one of σ and τ , and t is mapped to the other one. We will
show that G has an N-drawing generated in a region shape-equivalent to Π(dG(s), dG(t))i [Π(dG(t), dG(s))i] for each i,
1 ≤ i ≤ ν(dG(s), dG(t)) [1 ≤ i ≤ ν(dG(t), dG(s))]. We have two exceptions. If dG(s) = dG(t) = 1 and (s, t) ∈ E(G)
then we show that G has an N-drawing generated in a region shape-equivalent to Π(1, 1)i for each i, 1 ≤ i ≤ 2. Also, if
dG(s) = dG(t) = 3 and (s, t) ∈ E(G) then we show that G has an N-drawing generated in a region shape-equivalent to
Π(3, 3)1.
It is sufficient to prove the following theorem.

Theorem 2. Every series-parallel 4-graph with terminals s and t has an N-drawing generated in a region shape-equivalent to
Π(dG(s), dG(t))i for 1 ≤ i ≤ ν(dG(s), dG(t)) with the exception that 1 ≤ i ≤ 2 if dG(s) = dG(t) = 1 and (s, t) ∈ E(G), and
that i = 1 if dG(s) = dG(t) = 3 and (s, t) ∈ E(G).

Proof. The theorem is proved by induction on |E(G)|. An N-drawing of G in a region shape-equivalent toΠ(dG(s), dG(t))i is
called an Ni-drawing of G.
If |E(G)| = 1, G is a graph consisting of just an edge (s, t). Such a graph has an N1-drawing and N2-drawing, as shown in

Fig. 8.
Assume that |E(G)| ≥ 2, and Theorem 2 holds for any series-parallel 4-graph with at most |E(G)| − 1 edges. We assume,

without loss of generality, that dG(s) ≤ dG(t). We distinguish two cases.
Case A: G is a series-composition of G1 and G2.

Lemma 3. For any i, 1 ≤ i ≤ ν(dG(s), dG(t)), there exist j and k, 1 ≤ j ≤ ν(dG1(s1), dG1(t1)) and 1 ≤ k ≤ ν(dG2(s2), dG2(t2)),
such that an Ni-drawing of G can be generated by combining an Nj-drawing of G1 and Nk-drawing of G2.

Proof of Lemma 3. Table 1 shows such a pair of j and k for each i and the degrees dG(s), dG(t), and dG1(t1). Since neither
Π(1, 1)3 nor Π(3, 3)2 appears in the columns of Π(dG1(s1), dG1(t1))j and Π(dG2(s2), dG2(t2))k of Table 1, G1 has every Nj-
drawing indicated in the column ofΠ(dG1(s1), dG1(t1))j of the table, and G2 has every Nk-drawing indicated in the column
of Π(dG2(s2), dG2(t2))k of the table, by induction hypothesis. We can see that an Ni-drawing of G can be generated by
combining an Nj-drawing Γ1 of G1 and Nk-drawing Γ2 of G2 as shown in Figs. 9–15. For example, Fig. 9(a) shows that if
dG(s) = dG(t) = dG1(t1) = dG2(s2) = 1 then an N1-drawing of G can be generated from an N1-drawing Γ1 of G1 and
N1-drawing Γ2 of G2 by identifying t1 with s2. Fig. 9(b) shows that if dG(s) = dG(t) = dG1(t1) = 1 and dG2(s2) = 2 then
an N1-drawing of G can be generated from an N1-drawing Γ1 of G1 and N1-drawing Γ2 of G2 by scaling Γ1 and rotating Γ2
appropriately, and identifying t1 with s2. Fig. 10(o) shows that if dG(s) = 1, dG(t) = 2, dG1(t1) = 1, and dG2(s2) = 3 then
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Table 1
Pair ofΠ(dG1 (s1), dG1 (t1))j andΠ(dG2 (s2), dG2 (t2))k forΠ(dG(s), dG(t))i when G is a series-composition.

Π(dG(s), dG(t))i Π(dG1 (s1), dG1 (t1))j Π(dG2 (s2), dG2 (t2))k

Π(1, 1)1 Π(1, dG1 (t1))1 Π(dG2 (s2), 1)1
Π(1, 1)2 Π(dG2 (s2), 1)1

Π(1, 1)2 Π(1, 2)2 Π(dG2 (s2), 1)1
Π(1, 3)1 Π(1, 1)2

Π(1, 1)3 Π(1, dG1 (t1))2 Π(dG2 (s2), 1)2
Π(1, 2)1 Π(1, dG1 (t1))1 Π(dG2 (s2), 2)1
Π(1, 2)2 Π(1, dG1 (t1))2 Π(dG2 (s2), 2)1

Π(1, 1)1 Π(dG2 (s2), 2)2
Π(1, 2)3 Π(1, 2)1 Π(dG2 (s2), 2)2

Π(1, 3)2 Π(1, 2)1
Π(1, 2)4 Π(1, dG1 (t1))2 Π(dG2 (s2), 2)2

Π(1, 1)2 Π(dG2 (s2), 3)1
Π(1, 3)1 Π(1, 2)1 Π(dG2 (s2), 3)1

Π(1, 3)1 Π(1, 3)1
Π(1, 3)2 Π(1, dG1 (t1))2 Π(dG2 (s2), 3)1
Π(2, 2)1 Π(2, dG1 (t1))1 Π(dG2 (s2), 2)1
Π(2, 2)2 Π(2, dG1 (t1))1 Π(dG2 (s2), 2)2
Π(2, 3)1 Π(2, dG1 (t1))1 Π(dG2 (s2), 3)1
Π(2, 3)2 Π(2, dG1 (t1))2 Π(dG2 (s2), 3)1
Π(3, 3)1 Π(3, dG1 (t1))1 Π(dG2 (s2), 3)1

Π(3, 1)2 Π(dG2 (s2), 3)1
Π(3, 3)2 Π(3, 2)2 Π(dG2 (s2), 3)1

Π(3, 3)1 Π(1, 3)2
Π(dG(s), 4)1 Π(dG(s), dG1 (t1))1 Π(dG2 (s2), 4)1

Fig. 9. N-drawings of Gwhen G is a series-composition and dG(s) = dG(t) = 1.

an N3-drawing of G can be generated from an N1-drawing Γ1 of G1 and N2-drawing Γ2 of G2 by scaling and rotating Γ1 and
flipped Γ2 appropriately, and identifying t1 with s2. �

Case B: G is a parallel-composition of G1 and G2.
We assume, without loss of generality, that if G has edge (s, t) then G1 consists of exactly one edge (s1, t1).

Lemma 4. For any i, 1 ≤ i ≤ ν(dG(s), dG(t)), there exist j and k, 1 ≤ j ≤ ν(dG1(s1), dG1(t1)) and 1 ≤ k ≤ ν(dG2(s2), dG2(t2)),
such that an Ni-drawing of G can be generated by combining an Nj-drawing of G1 and Nk-drawing of G2.
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Fig. 10. N-drawings of Gwhen G is a series-composition, dG(s) = 1, and dG(t) = 2.

Fig. 11. N-drawings of Gwhen G is a series-composition, dG(s) = 1, and dG(t) = 3.

Proof of Lemma 4. We assume, without loss of generality, that dG1(s1) + dG2(s2) ≤ dG1(t1) + dG2(t2), and dG1(s1) =
min{dG1(s1), dG1(t1), dG2(s2), dG2(t2)}. We distinguish two cases:

Case B-1: (s, t) 6∈ E(G).
Table 2 shows such a pair of j and k for each i and the degrees dG(s), dG(t), dG1(s1), and dG1(t1).
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Fig. 12. N-drawings of Gwhen G is a series-composition and dG(s) = dG(t) = 2.

Fig. 13. N-drawings of Gwhen G is a series-composition, dG(s) = 2, and dG(t) = 3.

Fig. 14. N-drawings of Gwhen G is a series-composition and dG(s) = dG(t) = 3.

Since (s1, t1) 6∈ E(G1) and (s2, t2) 6∈ E(G2), G1 and G2 have every Nj-drawing and Nk-drawing indicated in the columns
of Π(dG1(s1), dG1(t1))j and Π(dG2(s2), dG2(t2))k of Table 2, respectively, by induction hypothesis. We can see that an Ni-
drawing of G can be generated by combining an Nj-drawing Γ1 of G1 and Nk-drawing Γ2 of G2 as shown in Fig. 16.
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Fig. 15. N-drawings of Gwhen G is a series-composition and dG(t) = 4.

Table 2
Pair ofΠ(dG1 (s1), dG1 (t1))j andΠ(dG2 (s2), dG2 (t2))k forΠ(dG(s), dG(t))i when G is a parallel-composition and (s, t) 6∈ E(G).

Π(dG(s), dG(t))i Π(dG1 (s1), dG1 (t1))j Π(dG2 (s2), dG2 (t2))k

Π(2, 2)1 Π(1, 1)2 Π(1, 1)2
Π(2, 2)2 Π(1, 1)2 Π(1, 1)3
Π(2, 3)1 Π(1, 1)2 Π(1, 2)2
Π(2, 3)2 Π(1, 1)2 Π(1, 2)4

Π(2, 4)1
Π(1, 1)2 Π(1, 3)2
Π(1, 2)2 Π(1, 2)2

Π(3, 3)1
Π(1, 1)2 Π(2, 2)2
Π(1, 2)1 Π(2, 1)3

Π(3, 3)2
Π(1, 1)3 Π(2, 2)2
Π(1, 2)2 Π(2, 1)4
Π(1, 1)2 Π(2, 3)2

Π(3, 4)1 Π(1, 2)2 Π(2, 2)2
Π(1, 3)2 Π(2, 1)2

Π(4, 4)1

Π(1, 1)2 Π(3, 3)2
Π(1, 2)1 Π(3, 2)2
Π(1, 3)1 Π(3, 1)1
Π(2, 2)2 Π(2, 2)2

Case B-2: (s, t) ∈ E(G).
Notice that dG1(s1) = dG1(t1) = 1, and (s2, t2) 6∈ E(G2), since G1 consists of exactly one edge (s1, t1) by the assumption

of Case B. Notice, also, thatΠ(dG(s), dG(t))i 6= Π(3, 3)2 by the exception of Theorem 2. Table 3 shows such a pair of j and
k for each i and the degrees dG(s), dG(t), dG1(s1), and dG1(t1). It is easy to see that G1 and G2 have every Nj-drawing and
Nk-drawing indicated in the columns ofΠ(dG1(s1), dG1(t1))j andΠ(dG2(s2), dG2(t2))k of Table 3, respectively, by induction
hypothesis. We can see that an Ni-drawing of G can be generated by combining an Nj-drawing Γ1 of G1 and Nk-drawing Γ2
of G2 as shown in Fig. 16. �

From Lemmas 3 and 4, and the induction hypothesis, we obtain Theorem 2. �
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Fig. 16. N-drawings of Gwhen G is a parallel-composition.

Table 3
Pair ofΠ(dG1 (s1), dG1 (t1))j andΠ(dG2 (s2), dG2 (t2))k forΠ(dG(s), dG(t))i when G is a parallel-composition and (s, t) ∈ E(G).

Π(dG(s), dG(t))i Π(dG1 (s1), dG1 (t1))j Π(dG2 (s2), dG2 (t2))k

Π(2, 2)1 Π(1, 1)2 Π(1, 1)2
Π(2, 2)2 Π(1, 1)2 Π(1, 1)3
Π(2, 3)1 Π(1, 1)2 Π(1, 2)2
Π(2, 3)2 Π(1, 1)2 Π(1, 2)4
Π(2, 4)1 Π(1, 1)2 Π(1, 3)2
Π(3, 3)1 Π(1, 1)2 Π(2, 2)2
Π(3, 4)1 Π(1, 1)2 Π(2, 3)2
Π(4, 4)1 Π(1, 1)2 Π(3, 3)2

4. Algorithm

The proof of Theorem 2 in the previous section provides a recursive algorithm, 2D_DRAW shown in Fig. 17, to generate
an N-drawing for a series-parallel 4-graph.

Theorem 5. Given a series-parallel 4-graph G with terminals s and t, and an integer i with 1 ≤ i ≤ ν(dG(s), dG(t)), 2D_DRAW
generates an Ni-drawing of G in O(|E(G)|2) time.

Proof. The correctness of 2D_DRAW follows from the proof of Theorem 2.
We will show the time complexity of 2D_DRAW. It is not difficult to see that scaling, rotation, and reflection of Γj(G1)

and Γk(G2) can be performed in O(|E(G1)|+ |E(G2)|) = O(|E(G)|) time. Thus, if T ′(G) is the computation time of 2D_DRAW
for G, we have the following recurrence relation:

T ′(G) ≤ T ′(G1)+ T ′(G2)+ c1|E(G)| + c2 (1)

for some positive constants c1 and c2. Let T (m) = max|E(G)|=m T ′(G). It follows from (1) that:

T (m) ≤ max
1≤p≤m−1

(T (p)+ T (m− p))+ c1m+ c2, (2)

since |E(G)| = |E(G1)| + |E(G2)| and 1 ≤ |E(G1)| ≤ |E(G)| − 1.

Claim 6. T (m) ≤ cm2 for a constant c = c1 + c2 + T (1).
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Fig. 17. Algorithm: 2D_DRAW (G, s, t, i).

Proof of Claim 6. Claim 6 holds when m = 1 since c · 12 ≥ T (1). Assume that m ≥ 2 and Claim 6 holds for any positive
integer less thanm. Then by (2), we have

T (m) ≤ max
1≤p≤m−1

(T (p)+ T (m− p))+ c1m+ c2

≤ max
1≤p≤m−1

(
cp2 + c(m− p)2

)
+ c1m+ c2

= cm2 − 2 cm+ 2c + c1m+ c2
= cm2 − (cm− 2c)− (cm− c1m− c2)
≤ cm2,

sincem ≥ 2. �

From Claim 6, we have T (|E(G)|) = O(|E(G)|2). This completes the proof of Theorem 5. �

As an example, we show an induction step to generate anN1-drawing of a series-parallel 4-graph G shown in Fig. 18(a). G
is a parallel-composition of series-parallel graphs G1 and G2 shown in Fig. 18(b) and (c), respectively. Since dG(s) = dG(t) =
3,we need anN1-drawingΓ1 ofG1 andN3-drawingΓ2 ofG2 by Table 2.Γ1 andΓ2 are shown in Fig. 18(d) and (e), respectively.
Finally, an N1-drawing Γ of G can be generated by flipping, rotating, and scaling Γ1 and Γ2 appropriately, and identifying s1
with s2, and t1 with t2 as shown in Fig. 18(f).
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(a) G. (b) G1 . (c) G2 . (d)
N1-drawing
Γ1 of G1 .

(e) N3-drawing Γ2
of G2 .

(f) N1-drawing of G.

Fig. 18. Example of a recursive step of algorithm.

5. Concluding remarks

Wecan prove that every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing,whichwill appear in a forthcoming
paper.
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