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Abstract—For the minimum feedback vertex set problem, we
show a linear time algorithm for bipartite permutation graphs,
the NP-hardness for grid intersection graphs, and a polynomial
time algorithm for graphs with maximum degree at most three.

I. INTRODUCTION

A vertex set F ⊆ V (G) of a graph G is a feedback vertex
set (FVS) if the subgraph of G induced by V (G)\F has no
cycles. A minimum feedback vertex set (MFVS) is an FVS
with minimum cardinality. The minimum feedback vertex set
problem (MinFVS) is to find an MFVS in a given graph. It is
known that MinFVS has many applications in various areas
including integrated circuits and optical networks (see [2],
[21], for example).

We first consider MinFVS for bipartite graphs (bigraphs).
The following relationships between bigraph classes have been
known [15] :

{Bipartite Permutation Graphs}
⊂ {Convex Graphs}
⊂ {2-directional Orthogonal Ray Graphs}
⊂ {Chordal Bipartite Graphs},

and

{2-directional Orthogonal Ray Graphs}
⊂ {Orthogonal Ray Graphs}
⊂ {Unit Grid Intersection Graphs}
⊂ {Grid Intersection Graphs}.

It is known that MinFVS is NP-hard for bigraphs [22],
while it can be solved in O(n5) time for chordal bipartite
graphs [10], in O(n2m) time for convex graphs [13], and in
O(nm) time for permutation graphs [12], where n and m are
the number of vertices and edges of a graph, respectively. We
show in Section II that MinFVS can be solved in O(n +m)
time for bipartite permutation graphs. We also show in Sec-
tion III that MinFVS is NP-hard for grid intersection graphs.

We next consider MinFVS for degree-constrained graphs.
It is known that MinFVS is NP-hard even for planar graphs
with maximum degree at most 4 [16], while it can be solved in
O(n4) time for graphs with maximum degree at most 3 [19],
[5]. We show in Section IV that MinFVS can be solved in
O(n2 log6 n) time for graphs with maximum degree at most 3.

II. A LINEAR TIME ALGORITHM FOR BIPARTITE

PERMUTATION GRAPHS

A. Bipartite Permutation Graphs

A graph G = (V,E) with a vertex set V = {v1, . . . , vn}
is a permutation graph if there exists a permutation π on
{1, . . . , n} such that for all i, j ∈ {1, . . . , n}, (vi, vj) ∈ E
if and only if (i− j)(π(i) − π(j)) < 0. A permutation graph
G is a bipartite permutation graph (permutation bigraph) if it
is bipartite.

A strong ordering of a bigraph G with a bipartition (X,Y )
is a pair of total orderings (x1, . . . , xp) of X and (y1, . . . , yq)
of Y such that for any i, i′, j, j′(1 ≤ i < i′ ≤ p, 1 ≤ j <
j′ ≤ q), (xi, yj′) ∈ E and (xi′ , yj) ∈ E imply (xi, yj) ∈ E
and (xi′ , yj′) ∈ E. For a bigraph with a strong ordering, the
vertices of the bigraph are said to be strongly ordered. It is
shown in [18] that a bigraph G is a permutation bigraph if
and only if G has a strong ordering, and a strong ordering of
G can be obtained in O(n +m) time.

It is also known that a strong ordering of a permutation bi-
graph G has the adjacency property: For every x ∈ X [y ∈ Y ],
the vertices in ΓG(x) [ΓG(y)] are consecutive. Here ΓG(v) is
the set of vertices adjacent to v in G. If no confusion arise,
we will omit the index.

B. The Algorithm

Let G = (V,E) be a connected permutation bigraph with
a bipartition (X,Y ) and a strong ordering (x1, . . . , xp) and
(y1, . . . , yq). Define that

V i
j = {x1, . . . , xi, y1, . . . , yj}

for 1 ≤ i ≤ p, 1 ≤ j ≤ q, and G[V i
j ] is a subgraph of G

induced by V i
j .

For convenience, we use S1+S2, S1−S2, S+x and S−x
instead of S1 ∪ S2, S1\S2, S ∪ {x} and S\{x}, respectively.
We also use max{S1, S2, . . . , Sk} to denote Si with maximum
cardinality.

A cycle-free set (CFS) is the complement of an FVS in
a graph. Our algorithm computes a maximum CFS (MCFS)
instead of an MFVS.

Our algorithm applies a dynamic programming scheme and
computes the following for each (xi, yj) ∈ E.

Ai
j : an MCFS of G[V i

j ],
Bi

j : an MCFS of G[V i
j ] including xi and yj ,

Ci
j : an MCFS of G[V i

j ] including xi and yj ,
and excluding the vertices in Γ(xi)− yj ,
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Di
j : an MCFS of G[V i

j ] including xi and yj ,
and excluding the vertices in Γ(yj)− xi.

Note that A0
0 = B0

0 = C0
0 = D0

0 = ∅, and Ap
q is an MCFS

of G.
Let l(i) and r(i) be the smallest and largest index of a vertex

in Γ(xi), respectively, and let l(j) and r(j) be the smallest
and largest index of a vertex in Γ(yj), respectively. We use
Ãi

j (1 ≤ i ≤ p, 1 ≤ j ≤ q) defined as follows.

Ãi
j =

⎧⎪⎨
⎪⎩

Ai
j if (xi, yj) ∈ E,

Ai
r(i) + {yr(i)+1, . . . , yj} if r(i) < j,

A
r(j)
j + {xr(j)+1, . . . , xi} if r(j) < i.

Note that Ãi
j is an MCFS of G[V i

j ] even if (xi, yj) /∈
E, since if r(i) < j [r(j) < i] then yr(i)+1, . . . , yj
[xr(j)+1, . . . , xi] are isolated vertices in G[V i

j ].
We can compute Ai

j , B
i
j , C

i
j , and Di

j for all (xi, yj) ∈ E
in linear time by the following relationship among these data
structures.

Lemma 1: Ai
j = max{Bi

j , Ã
i1
j , Ãi

j1
}, where i1 = i−1 and

j1 = j − 1.
Proof: Consider the following four cases.

(1) If xi, yj ∈ Ai
j then Ai

j = Bi
j .

(2) If xi /∈ Ai
j and yj ∈ Ai

j then Ai
j = Ãi1

j .

(3) If xi ∈ Ai
j and yj /∈ Ai

j then Ai
j = Ãi

j1
.

(4) If xi, yj /∈ Ai
j then Ai

j = max{Ãi1
j , Ãi

j1
}.

Lemma 2: Bi
j = max{Ci

j , D
i
j}.

Proof: Let

X1 = {xl(j), . . . , xi1} and Y1 = {yl(i), . . . , yj1}.
Suppose Bi

j ∩X1 	= ∅ and Bi
j ∩Y1 	= ∅. Let x̂ ∈ Bi

j ∩X1 and
ŷ ∈ Bi

j∩Y1. Since (xi, ŷ), (x̂, yj) ∈ E, we have (x̂, ŷ) ∈ E by
the definition of the strong ordering. It follows that Bi

j contains
a cycle (x̂, ŷ, xi, yi), a contradiction. Thus Bi

j ∩ X1 = ∅ or
Bi

j ∩ Y1 = ∅. If Bi
j ∩ X1 = ∅ then we have Bi

j = Ci
j . If

Bi
j ∩ Y1 = ∅ then we have Bi

j = Di
j .

We also have the following two lemmas, which are proved
in the next section.

Lemma 3: Ci
j is

1) Ãi1
j2
+ {xi, yj} if l(j) ≥ i1,

2) Ci1
j + xi if l(j) < i1 and (xi1 , yj2) /∈ E,

3) max{Ãi2
j2
+{xi, yj}, Ci1

j +xi, D
i1
j2
+{xi, yj}} if l(j) <

i1, (xi1 , yj2) ∈ E, and (xi2 , yj2) /∈ E,

4) max{Ãi2
j2
+ {xi, yj}, Ci1

j + xi, Di1
j2
+ {xi, yj}, Bi2

j2
+

{xi, yj, xi1}} if l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈
E, and l(i1) = j2,

5) max{Ãi2
j2
+ {xi, yj}, Ci1

j + xi, Di1
j2
+ {xi, yj}} other-

wise.

Here i2 = l(j)− 1 and j2 = l(i)− 1.
Lemma 4: Di

j is

1) Ãi2
j1
+ {xi, yj} if l(i) ≥ j1,

1: Obtain a strong ordering of G.
2: A0

0, B
0
0 , C

0
0 , D

0
0 ← ∅.

3: Compute l(i), l(j), r(i), r(j)
for i and j, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

4:

5: for all (xi, yj) ∈ E do
6: i1 ← i1, j1 ← j1, i2 ← l(j)− 1, and j2 ← l(i)− 1.
7: if i1 ≤ l(j) then
8: Ci

j ← Ãi1
j2
+ {xi, yj}.

9: else if (xi1 , yj2) /∈ E then
10: Ci

j ← Ci1
j + xi.

11: else if (xi2 , yj2) ∈ E and l(j1) = i2 then
12: Ci

j ← max{Ãi2
j2
+ {xi, yj}, Ci1

j + xi,
Di1

j2
+ {xi, yj}, Bi2

j2
+ {xi, yj , xi1}}.

13: else
14: Ci

j ← max{Ãi2
j2
+ {xi, yj}, Ci1

j + xi,
Di1

j2
+ {xi, yj}}.

15: end if
16: if j1 ≤ l(i) then
17: Di

j ← Ãi2
j1
+ {xi, yj}.

18: else if (xi2 , yj1) /∈ E then
19: Di

j ← Di
j1 + yj .

20: else if (xi2 , yj2) ∈ E and l(j1) = i2 then
21: Di

j ← max{Ãi2
j2
+ {xi, yj}, Di

j1
+ yj ,

Ci2
j1
+ {xi, yj}, Bi2

j2
+ {xi, yj, yj1}}.

22: else
23: Di

j ← max{Ãi2
j2
+ {xi, yj}, Di

j1
+ yj ,

Ci2
j1
+ {xi, yj}}.

24: end if
25: Bi

j ← max{Ci
j , Di

j}.
26: Ai

j ← max{Ãi1
j , Ãi

j1
, Bi

j}.
27: end for
28: print V − Ap

q

Fig. 1. Algorithm 1.

2) Di
j1
+ yj if l(i) < j1 and (xi1 , yj1) /∈ E,

3) max{Ãi2
j2
+{xi, yj}, Di

j1
+yj, C

i2
j1
+{xi, yj}} if l(i) <

j1, (xi1 , yj1) ∈ E, and (xi2 , yj2) /∈ E,

4) max{Ãi2
j2
+ {xi, yj}, Di

j1
+ yj , Ci2

j1
+ {xi, yj}, Bi2

j2
+

{xi, yj , yj1}} if l(i) < j1, (xi1 , yj1) ∈ E, (xi2 , yj2) ∈
E, and l(j1) = i2,

5) max{Ãi2
j2
+ {xi, yj}, Di

j1
+ yj , Ci2

j1
+ {xi, yj}} other-

wise.

The lemmas above establish an algorithm using dynamic
programming technique for computing Ai

j , B
i
j, C

i
j , and Di

j

for each edge (xi, yj) in an increasing order from (x1, y1)
to (xp, yq) so that Ai′

j′ , B
i′
j′ , C

i′
j′ , and Di′

j′ for every i′, j′

(i′ + j′ < i + j) are available when computing the data for
edge (xi, yj). Our algorithm is shown in Fig. 1.

Theorem 1: Algorithm 1 solves MinFVS in O(n+m) time
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for permutation bigraphs, where n and m are the number of
vertices and edges of a graph, respectively.

C. Proof of Lemmas 3 and 4

We show a proof of Lemma 3. Lemma 4 can be proved by
similar arguments. We distinguish five cases.

Case 1 l(j) ≥ i1:

We show Ci
j = Ãi1

j2
+ {xi, yj}. Notice that l(j) ≥ i1 implies

that Ãi1
j2
+ {xi, yj} is an MCFS of G[V i

j ] that contains no
vertex in Y1, since there exists at most one vertex in V i1

j2
adjacent to xi or yj .

Case 2 l(j) < i1 and (xi1 , yj2) /∈ E:
We show Ci

j = Ci1
j + xi. Notice that l(j) < i1 implies

(xi1 , yj) ∈ E, and (xi1 , yj2) /∈ E implies l(i1) = l(i). Thus
Ci1

j + xi is an MCFS of G[V i
j ] that contains no vertex in Y1.

Case 3 l(j) < i1, (xi1 , yj2) ∈ E, and (xi2 , yj2) /∈ E:
We show

Ci
j = max{Ãi2

j2
+ {xi, yj}, Ci1

j + xi, Di1
j2
+ {xi, yj}}

by a series of claims.
Let Ci

j(xi1 ) be an MCFS of G[V i
j ] that contains xi, yj , and

xi1 , and let Ci
j(xi1 , yj2) be an MCFS of G[V i

j ] that contains
xi, yj , xi1 , and yj2 . Let

Y2 = {yl(i1), . . . , yj2}.
Note that Ci

j(xi1) contains no vertex in Y1, and Ci
j(xi1 , yj2)

contains no vertex in X1−xi1 , since the vertices are strongly
ordered.

Claim 1: If l(j) < i1 and (xi1 , yj2) ∈ E then

Ci
j = max{Ãi2

j2
+ {xi, yj}, Ci

j(xi1)}.

Proof: Let x̂ ∈ X1 − xi1 , and Ĉ be an MCFS of G[V i
j ]

that contains xi and yj , and no vertex in Y1. If Ĉ contains x̂
but not xi1 then Ĉ− x̂+xi1 is also an MCFS of G[V i

j ], since
ΓG[V i

j ]
(xi1 ) ⊆ ΓG[V i

j ]
(x̂). Thus we have the claim.

Claim 2: If l(j) < i1 and (xi1 , yj2) ∈ E then

Ci
j(xi1) = max{Ci1

j + xi, Ci
j(xi1 , yj2)}.

Proof: The proof is similar to that of Claim 1, and is
omitted.

Claim 3: If l(j) < i1, (xi1 , yj2) ∈ E, and (xi2 , yj2) /∈ E
then

Ci
j(xi1 , yj2) = Di1

j2
+ {xi, yj}.

Proof: Notice that (xi2 , yj2) /∈ E implies l(j2) = l(j).
Thus Di1

j2
+ {xi, yj} is a CFS of G[V i

j ], since no vertex
in V i1

j2
− xi1 is adjacent to xi or yj . Notice that Di1

j2
+

{xi, yj} contains xi, yj , xi1 , and yj2 . Notice also that any
CFS containing xi, yj , xi1 , and yj2 contains no vertex in
V i
j − V i1

j2
− {xi, yj, xi1 , yj2}, since the vertices are strongly

ordered. Thus Di1
j2
+ {xi, yj} is an MCFS of G[V i

j ] that
contains xi, yj , xi1 , and yj2 .

Case 4 l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E, and
l(i1) = j2:
We show

Ci
j = max{Ãi2

j2
+ {xi, yj}, Ci1

j + xi,

Di1
j2
+ {xi, yj}, Bi2

j2
+ {xi, yj , xi1}}

by the following two claims together with Claims 1 and 2.
Let Ci

j(xi1 , yj2 , xi2) be an MCFS of G[V i
j ] that contains

xi, yj , xi1 , yj2 , and xi2 . Let

X2 = {xl(j2), . . . , xi2}.
Note that Ci

j(xi1 , yj2 , xi2) contains no vertex in Y2−yj2 , since
the vertices are strongly ordered.

Claim 4: If l(j) < i1, (xi1 , yj2) ∈ E, and (xi2 , yj2) ∈ E
then

Ci
j(xi1 , yj2) = max{Di1

j2
+ {xi, yj}, Ci

j(xi1 , yj2 , xi2)}.
Proof: The proof is similar to that of Claim 1, and is

omitted.
Claim 5: If l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E, and

l(i1) = j2 then

Ci
j(xi1 , yj2 , xi2) = Bi2

j2
+ {xi, yj , xi1}.

Proof: Notice that l(i1) = j2 implies that Bi2
j2
+

{xi, yj , xi1} is a CFS of G[V i
j ], since no vertex in V i2

j2
− yj2

is adjacent to xi, yj , or xi1 . Notice that Bi2
j2
+ {xi, yj , xi1}

contains xi, yj , xi1 , yj2 , and xi2 . Notice also that any CFS
containing xi, yj , xi1 , yj2 , and xi2 contains no vertex in
V i
j −V i2

j2
−{xi, yj , xi1 , yj2 , xi2}, since the vertices are strongly

ordered. Thus Bi2
j2
+ {xi, yj , xi1} is an MCFS of G[V i

j ] that
contains xi, yj , xi1 , yj2 , and xi2 .

Now we consider the remaining case.
Case 5 l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E, and

l(i1) < j2:
We show

Ci
j = max{Ãi2

j2
+ {xi, yj}, Ci1

j + xi, Di1
j2
+ {xi, yj}}

by the following claims together with Claims 1, 2, and 4.
Let

i3 = l(j2)− 1, j3 = l(i1)− 1,

X3 = {xl(j3), . . . , xi3}, and Y3 = {yl(i2), . . . , yj3}.
Let Ci

j(xi1 , yj2 , xi2 , yj3) be an MCFS of G[V i
j ] that contains

xi, yj , xi1 , yj2 , xi2 , and yj3 . Note that Ci
j(xi1 , yj2 , xi2 , yj3)

contains no vertex in X2−xi2 , since the vertices are strongly
ordered.

We distinguish two cases.
Case 5-1 (xi2 , yj3) /∈ E:
Claim 6: If l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E,

l(i1) < j2, and (xi2 , yj3) /∈ E then

Ci
j(xi1 , yj2 , xi2) = Ci2

j2
+ {xi, yj , xi1}.

Proof: Notice that (xi2 , yj3) /∈ E implies l(i2) = l(i1).
Thus Ci2

j2
+ {xi, yj , xi1} is a CFS of G[V i

j ], since no vertex
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in V i2
j2
− yj2 is adjacent to xi, yj , or xi1 . Notice that Ci2

j2
+

{xi, yj, xi1} contains xi, yj , xi1 , yj2 , and xi2 . Notice also
that any CFS containing xi, yj , xi1 , yj2 , and xi2 contains no
vertex in V i

j − V i2
j2
− {xi, yj , xi1 , yj2 , xi2}, since the vertices

are strongly ordered. Thus Ci2
j2
+ {xi, yj , xi1} is an MCFS of

G[V i
j ] that contains xi, yj , xi1 , yj2 , and xi2 .

Claim 7: If l(j) < j1 then

|Ci1
j + xi| ≥ |Ci2

j2
+ {xi, yj , xi1}|.

Proof: Let Ĉ = Ci2
j2
+{xi, yj , xi1}. There exists a vertex

x̂ ∈ X1 such that x̂ /∈ Ĉ , since l(j) < i1. Thus Ĉ − yj2 + x̂
contains no vertex of Y1 + Y2 + Y3, since the vertices are
strongly ordered. Thus Ĉ − yj2 + x̂ is a CFS of G[V i

j ], and
|Ci1

j + xi| ≥ |Ĉ − yj2 + x̂| = |Ci2
j2
+ {xi, yj , xi1}|.

Case 5-2 (xi2 , yj3) ∈ E:
Claim 8: If l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E,

l(i1) < j2, and (xi2 , yj3) ∈ E then

Ci
j(xi1 , yj2 , xi2) = max{Ci2

j2
+ {xi, yj, xi1},

Ci
j(xi1 , yj2 , xi2 , yj3)}.

Proof: The proof is similar to that of Claim 1, and is
omitted.

We further distinguish two cases.
Case 5-2-1 (xi3 , yj3) /∈ E:
Claim 9: If l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E,

l(i1) < j2, (xi2 , yj3) ∈ E, and (xi3 , yj3) /∈ E then

Ci
j(xi1 , yj2 , xi2 , yj3) = Di2

j3
+ {xi, yj , xi1 , yj2}.

Proof: Notice that (xi3 , yj3) /∈ E implies l(j3) = l(j2).
Thus Di2

j3
+{xi, yj , xi1 , yj2} is a CFS of G[V i

j ], since no vertex
in V i2

j3
−xi2 is adjacent to xi, yj , xi1 , or yj2 . Notice that Di2

j3
+

{xi, yj, xi1 , yj2} contains xi, yj , xi1 , yj2 , xi2 , and yj3 . Notice
also that any CFS containing xi, yj , xi1 , yj2 , xi2 , and yj3 con-
tains no vertex in V i

j − V i2
j2
−{xi, yj , xi1 , yj2 , xi2 , yj2}, since

the vertices are strongly ordered. Thus Di2
j3
+{xi, yj , xi1 , yj2}

is an MCFS of G[V i
j ] that contains xi, yj , xi1 , yj2 , xi2 , and

yj3 .
Claim 10: If l(i1) < j2 then

|Di1
j2
+ {xi, yj}| ≥ |Di2

j3
+ {xi, yj, xi1 , yj2}|.

Proof: Let D̂ = Di2
j3
+ {xi, yj , xi1 , yj2}. There exists a

vertex ŷ ∈ Y2 such that ŷ /∈ D̂, since l(i1) < j2. Thus D̂ −
xi2+ ŷ contains no vertex of X1+X2+X3, since the vertices
are strongly ordered. Thus we conclude that D̂ − xi2 + ŷ is
a CFS of G[V i

j ], and |Di1
j2
+ {xi, yj}| ≥ |D̂ − xi2 + ŷ| =

|Di2
j3
+ {xi, yj, xi1 , yj2}|.

Case 5-2-2 (xi3 , yj3) ∈ E:
Let Ci

j(xi1 , yj2 , xi2 , yj3 , xi3) be an MCFS of G[V i
j ] that

contains xi, yj , xi1 , yj2 , xi2 , yj3 , and xi3 .
Claim 11: If l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E,

l(i1) < j2, (xi2 , yj3) ∈ E, and (xi3 , yj3) ∈ E then

Ci
j(xi1 , yj2 , xi2 , yj3) = max{Di2

j3
+ {xi, yj, xi1 , yj2},

Ci
j(xi1 , yj2 , xi2 , yj3 , xi3)}.

Proof: The proof is similar to that of Claim 1, and is
omitted.

Claim 12: If l(j) < i1, (xi1 , yj2) ∈ E, (xi2 , yj2) ∈ E,
l(i1) < j2, (xi2 , yj3) ∈ E, and (xi3 , yj3) ∈ E then

|Ci1
j + xi| ≥ |Ci

j(xi1 , yj2 , xi2 , yj3 , xi3 )|.
Proof: Let Ĉ = Ci

j(xi1 , yj2 , xi2 , yj3 , xi3). There exists
a vertex x̂ ∈ X1 such that x̂ /∈ Ĉ, since l(j) < i1. Thus
Ĉ − yj2 + x̂ contains no vertex of Y1 + Y2 + Y3 − xj3 , since
the vertices are strongly ordered. Thus we conclude that Ĉ −
yj2 + x̂ is a CFS of G[V i

j ], and |Ci1
j + xi| ≥ |Ĉ − yj2 + x̂| =

|Ci
j(xi1 , yj2 , xi2 , yj3 , xi3)| by the definition of Ci1

j .

III. NP-HARDNESS FOR GRID INTERSECTION GRAPHS

A. Grid Intersection Graphs

A bigraph G with a bipartition (X,Y ) is a grid intersection
graph if X and Y correspond to sets of horizontal and vertical
line segments in the plain, respectively, such that for any x ∈
X and y ∈ Y , (x, y) ∈ E(G) if and only if a line segment
corresponding to x and a line segment corresponding to y
intersect. The following is shown in [8].

Theorem I: Any planar bigraph is a grid intersection graph.

B. NP-Hardness

We consider a decision problem associated with MinFVS
defined as follows.

FEEDBACK VERTEX SET
INSTANCE: Graph G, positive integer k.
QUESTION: Is there an FVS of size k in G?

It is known that FEEDBACK VERTEX SET is NP-
complete for planar graphs [11] and bigraphs [22]. We show
the following.

Theorem 2: FEEDBACK VERTEX SET is NP-complete
even for planar bigraphs.

Proof: Our proof is similar to that used in [11] and [22].
We show a polynomial time reduction from VERTEX
COVER for planar graphs to FEEDBACK VERTEX SET
for planar bigraphs. It is well-known that VERTEX COVER
is NP-complete for planar graphs [7].

VERTEX COVER is defined as follows.
VERTEX COVER

INSTANCE: Graph H , positive integer h.
QUESTION: Is there a vertex cover of size h in H , i.e.,
a subset S ⊆ V (H) with |S| = h such that for each edge
(u, v) ∈ E at least one of u and v belongs to S?

Let H be a planar graph as an instance of VERTEX
COVER. Let G be a graph obtained from H by replacing
each edge (u, v) by a cycle (u, xuv, v, yuv), where xuv and
yuv are new vertices. It is easy to see that G is a planar bigraph
and can be constructed in linear time.

It is also easy to see that H has a vertex cover of size h if
and only if G has an FVS of size h.

From Theorems I and 2, we have the following.
Theorem 3: MinFVS is NP-hard for grid intersection

graphs.
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IV. A POLYNOMIAL TIME ALGORITHM FOR GRAPHS WITH

MAXIMUM DEGREE AT MOST THREE

A vertex set S ⊆ V (G) of a graph G is a separating set
if the number of connected components of the subgraph of
G induced by V (G)\S is more than that of G. A vertex set
S ⊆ V (G) of a graph G is an independent set if no two
vertices of S are adjacent. A maximum nonseparating indepen-
dent set (MNIS) is a maximum independent set that contains
no separating set. The maximum nonseparating independent
set problem (MaxNIS) is to find an MNIS in a given graph.

Like MinFVS, MaxNIS is also NP-hard even for planar
graphs with maximum degree at most 4 [6], while it can be
solved in O(n4) time for graphs with maximum degree at
most 3 [19], [5], where n is the number of vertices of a graph.

A graph is said to be k-regular if the degree of every vertex
is k. Let η(G) and ν(G) be the number of vertices in MFVS
and MNIS of G, respectively. It is shown in [19] that for any
graph H with maximum degree at most 3, we can construct 3-
regular graphs G and G′ in linear time such that η(G) = η(H)
and ν(G′) = ν(H), respectively. It is also shown that for a
3-regular graph G,

ν(G) + η(G) = μ(G).

Here μ(G) = m−n+c, where n, m, and c are the number of
vertices, edges, and connected components of G, respectively.
μ(G) is known as the nullity, cyclomatic number, and first
Betti number of G.

An embedding of a graph G in Sk, a sphere with k handles,
is a continuous one-to-one mapping. The components of Sk−
G are called regions. An embedding is said to be cellular if
each region is homeomorphic to an open disk. γM (G) is the
maximum-genus of G, which is the maximum value of k such
that G is cellular embeddable in Sk. It is shown in [9] that

γM (G) = ν(G),

for a 3-regular graph G. Moreover, it is known that comput-
ing γM (G) can be reduced to the cographic matroid parity
problem [3], which can be solved in O(nm log6 n) time [4],
[5], where n and m are the number of vertices and edges of
a graph, respectively. Thus we have the following.

Theorem 4: MinFVS and MaxNIS can be solved in
O(n2 log6 n) time for graphs with maximum degree at most 3.

V. CONCLUDING REMARKS

• It should be noted that our linear time algorithm, Algo-
rithm 1, for permutation bigraphs is similar to an O(n2m)
time algorithm for convex graphs proposed in [13]. The
difference in the time complexity is due to the strong
ordering.

• It is known that the class of grid intersection graphs is
a subclass of the boxicity-2 graphs [1], [8]. Thus, from
Theorem 3, we conclude that MinFVS is NP-hard for
boxicity-2 graphs, settling an open question posed in [17].

• A vertex cover S ⊆ V (G) of a connected graph G is
a connected vertex cover if the subgraph of G induced

by S is connected. A minimum connected vertex cover
problem (MinCVC) is to find a connected vertex cover
with minimum cardinality in a given graph. It is shown
in [14], [20] that MinCVC for quasi-wheels, which is a
subclass of 3-connected graphs, can be reduced to the
problem to find an MNIS that consists of only vertices
of degree 3. It is also shown that this problem can be
reduced to the cographic matroid parity problem in linear
time by the reduction similar to that shown in section IV.
It follows that MinCVC for quasi-wheels can be solved
in O(n2 log6 n) time, where n is the number of vertices
of a graph.

• The time complexity of MinFVS for orthogonal ray
graphs and unit grid intersection graphs remains open.
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