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Abstract: The 3-D channel routing is a fundamental problem on the physical design
of 3-D integrated circuits. The 3-D channel is a 3-D grid G and the terminals are
vertices of G located in the top and bottom layers. A net is a set of terminals to
be connected. The objective of the 3-D channel routing problem is to connect the
terminals in each net with a Steiner tree (wire) in G using as few layers as possible
and as short wires as possible in such a way that wires for distinct nets are disjoint.
This paper shows that the problem is intractable.
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1 Introduction

The three-dimensional (3-D) integration is an emerging technology to implement large circuits,
and currently being extensively investigated. (See [1, 2, 3, 4, 6, 11, 15, 16] for example.) In this
paper, we consider a problem on the physical design of 3-D integrated circuits.

The 3-D channel is a 3-D grid G consisting of columns, rows, and layers which are rectilinear
grid planes defined by fixing x-, y-, and z-coordinates at integers, respectively. The numbers of
columns, rows, and layers are called the width, depth, and height of G, respectively. (See Fig. 1.)
G is called a (W,D,H)-channel if the width is W , depth is D, and height is H. A vertex of G
is a grid point with integer coordinates. We assume without loss of generality that the vertex
set of a (W,D,H)-channel is {(x, y, z)|x ∈ [W ], y ∈ [D], z ∈ [H]}, where [n] = {1, 2, . . . , n} for
a positive integer n. Layers defined by z = H and z = 1 are called the top and bottom layers,
respectively.

A terminal is a vertex of G located in the top or bottom layer. A net is a set of terminals
to be connected. A net containing k terminals is called a k-net. The object of the 3-D channel
routing problem is to connect the terminals in each net with a Steiner tree (wire) in G using as
few layers as possible and as short wires as possible in such a way that Steiner trees spanning
distinct nets are vertex-disjoint. A set of nets is said to be routable in G if G has vertex-disjoint
Steiner trees spanning the nets.

This paper considers the complexity of the following decision problem.

3-D CHANNEL ROUTING

Instance: Positive integers W , D, H, a set of terminals T ⊆ {(x, y, z)|x ∈ [W ], y ∈
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Figure 1: 3-D channel.

[D], z ∈ {1,H}} and a partition of T into nets N1, N2, . . . , Nν .

Question: Is a set of nets {N1, N2, . . . , Nν} routable in a (W,D,H)-channel?

We have two well-known problems as subproblems of 3-D CHANNEL ROUTING, namely,
PLANAR CHANNEL ROUTING and TWO-ROW CHANNEL ROUTING. These problems can
be stated as follows.

PLANAR CHANNEL ROUTING

Instance: Positive integers W , H, a set of terminals T ⊆ {(x, 1, z)|x ∈ [W ], z ∈ {1,H}}
and a partition of T into nets N1, N2, . . . , Nν .

Question: Is a set of nets {N1, N2, . . . , Nν} routable in a (W, 1,H)-channel?

TWO-ROW CHANNEL ROUTING

Instance: Positive integers W , H, a set of terminals T ⊆ {(x, 1, z)|x ∈ [W ], z ∈ {1,H}}
and a partition of T into nets N1, N2, . . . , Nν .

Question: Is a set of nets {N1, N2, . . . , Nν} routable in a (W, 2,H)-channel?

It should be noted that TWO-ROW CHANNEL ROUTING has been known as “UNRE-
STRICTED” TWO-LAYER CHANNEL ROUTING in the literature. The complexity of TWO-
ROW CHANNEL ROUTING is a longstanding open question posed by Johnson [7], while PLA-
NAR CHANNEL ROUTING can be solved in polynomial time as shown by Dolev, Karplus,
Siegel, Strong, and Ullman [5].

The purpose of this paper is to show the following.

Theorem 1 3-D CHANNEL ROUTING is NP-complete even for 2-nets.

We prove Theorem 1 by showing that 3-D CHANNEL ROUTING is NP-hard even for 2-nets
in Section 2, and that 3-D CHANNEL ROUTING is in NP in Section 3.

The complexity of TWO-ROW CHANNEL ROUTING is still open. Also, the complexity of
the following problem is open for any fixed integer k ≥ 2.
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2.5-D CHANNEL ROUTING

Instance: Positive integers W , H, a set of terminals T ⊆ {(x, y, z)|x ∈ [W ], y ∈ [k], z ∈
{1,H}} and a partition of T into nets N1, N2, . . . , Nν .

Question: Is a set of nets {N1, N2, . . . , Nν} routable in a (W,k,H)-channel?

2 3-D CHANNEL ROUTING is NP-Hard

We show in this section the following theorem.

Theorem 2 3-D CHANNEL ROUGIN is NP-hard even for 2-ntes.

The 3-D channel routing for 2-nets is closely related to the (r × s− 1)-puzzle defined below.

2.1 (r × s − 1)-PUZZLE

The (r× s− 1)-puzzle is a generalization of the well-known 15-puzzle [9]. The (r× s− 1)-puzzle
is played on an r×s board, r, s ≥ 2. There are rs distinct tiles on the board: one blank tiles and
rs− 1 tiles numbered from 1 to rs− 1. Each of the rs square locations of the board is occupied
by exactly one tile. An instance of (r× s−1)-puzzle consists of two board configurations C (the
initial configuration) and C ′ (the final configuration). A move is an exchange of the blank tile
with a nonblank tile located on a horizontally or vertically adjacent location. The goal of the
puzzle is to find a sequence of moves that transforms C to C ′. The configuration C ′ is said to
be reachable from C if there exists such a sequence of moves. Notice that C ′ is reachable from C
if and only if C is reachable from C ′. The configurations C and C ′ are said to be reachable with
k moves if there exists a sequence of at most k moves that transforms C to C ′. Figure 2 shows

PSfrag replacements

1 2 3 4

5 6 7 8

9 10 11 12

13

14
15
i
j

blank tile

14 15

PSfrag replacements

1 2 3 4

5 6 7 8

9 10 11 12

13

14
15
i
j

blank tile

15 14

(a) Initial configuration. (b) Final configuration.

Figure 2: Unreachable configurations of (4 × 4 − 1)-puzzzle.

two unreachable configurations of (4 × 4 − 1)-puzzle. This is the original 15-puzzle of Loyd [9].
Our problem is to find a shortest sequence of moves that transforms C to C ′ if C and C ′ are
reachable. The corresponding decision problem is described as follows.

(r × s− 1)-PUZZLE
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Instance: Two r × s board configurations C and C ′, and a positive integer k.

Question: Are C and C ′ reachable with k moves?

Ratner and Warmuth [13] showed the following.

Theorem I (r × s− 1)-PUZZLE is NP-complete.

While it is intractable to find a shortest sequence of moves that transforms a configuration
to another, we can decide in polynomial time if a given two configurations are reachable, and
we can find a sequence of a polynomial number of moves that transforms a configuration to
another if they are reachable. Let C and C ′ be any configurations. We assume without loss of
generality that the blank tile is located at the right bottom position in the both configurations.
Let π be a permutation on the nonblank tiles such that π(t) = t′ if and only if the location of a
nonblank tile t in C is the same as the location of a nonblank tile t′ in C ′. Wilson [17] showed
the following.

Theorem II Configurations C and C ′ are reachable if and only if π is even.

The following theorem was shown by Parberry [12] and Kornhauser, Miller, and Spirakis [8].

Theorem III In an (n × n − 1)-puzzle, a configuration can be transformed to any reachable
configuration with O(n3) moves.

Theorem III can be easily generalized as follows.

Theorem 3 In an (r × s− 1)-puzzle, a configuration can be transformed to any reachable con-
figuration with O(r2s+ rs2) moves.

2.2 Proof of Theorem 2

The (r × s− 1)-puzzle is naturally associated with a 3-D channel routing for 2-nets as follows.
The configurations C and C ′ are corresponding to the top and bottom layers. A terminal is
corresponding to a location of a nonblank tile on C or C ′. A pair of locations of a nonblank
tile on C and C ′ is corresponding to a 2-net. For a sequence of moves that transforms C to
C ′, locations in the sequences for a nonblank tiles corresponds to a part of the wire connecting
the terminals of the corresponding 2-net. It is easy to see that each of the first and last moves
induces exactly one bend and each of other moves induces exactly two bends. Thus we obtain
the following.

Theorem 4 Configurations C and C ′ of (r× s−1)-puzzle are reachable with k moves for k ≥ 2
if and only if the 2-nets corresponding to the nonblank tiles are routable in an (r, s, k)-channel
with at most 2k − 2 bends.

Theorem 4 implies a polynomial time reduction from (r×s−1)-PUZZLE to 3-D CHANNEL
ROUGING. Thus we conclude that 3-D CHANNEL ROUTING is NP-hard by Theorem I. This
completes the proof of Theorem 2.

Example 1 For initial and final configurations C1 and C2 of (4×4−1)-puzzle shown in Fig. 3,
the corresponding 2-nets are shown in Fig. 4. A sequence of 3 moves that transforms C1 to C2,
and the corresponding 3-D channel routing with height 3 are shown in Fig. 5.
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Figure 3: Initial and final configurations of (4 × 4 − 1)-puzzle.
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Figure 4: Corresponding 2-nets.
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Figure 5: Correspondence between (4 × 4 − 1)-puzzle and 3-D channel routing.

3 3-D CHANNEL ROUTING is in NP

We show in this section the following theorem.
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Theorem 5 3-D CHANNEL ROUTING is in NP.

It should be noted that Theorem 5 is not trivial. Let τ = |T | and τi = |Ni|, i ∈ [ν]. Since
N = (N1, N2, . . . , Nν) is a partition of T , τ =

∑ν
i=1

τi ≥ ν. The size of representing each
terminal is O(log(WD)), and the size of representing net Ni is O(τi log τ). Thus the size of an
instance of the problem is

O
(

log(WDH) + τ log(WD) +

ν
∑

i=1

τi log τ

)

= O (log(WDH) + τ log(WD) + τ log τ)

= O (τ log(WDτ) + logH) .

Suppose N is routable in the (W,D,H)-channel G, and let Si be a rectilinear Steiner tree
connecting the terminals in net Ni, and S = {S1, S2, . . . , Sν}. Each Si can be represented by
the coordinates of terminals of Ni, Steiner points, and bends of Si, and edges of Si. It should be
noted that the number of Steiner points of Si is at most τi − 1. Let βi be the number of bends
of Si, and β =

∑ν
i=1

βi. Then the size of representing Si is Ω(βi) and so the size of representing
S is

Ω

(

ν
∑

i=1

βi

)

= Ω(β).

Since β can be as large as Θ(WDH), the size of representing S can be an exponential in the
instance size if τ is a polynomial in log(WDH).

On the other hand, the size of representing Si is

O
(

(τi + βi)
(

log(WDH) + log(τ + β)l
)l
)

,

and so the size of representing S is

O
(

ν
∑

i=1

(

(τi + βi)
(

log(WDH) + log(τ + β)l
)l
)l
)

= O
(

(τ + β) log
(

WDH(τ + β)t
)t
)

Thus, in order to prove Theorem 5, it suffices to show that if N is routable in G, there exists a
routing for N such that β is bounded by a polynomial in the instance size.

3.1 Preliminaries

An (r × s− 2)-puzzle has two blank tiles and rs− 2 tiles numbered from 1 to rs− 2. Contrary
to the (r× s− 1)-puzzle, any two configurations in the (r× s− 2)-puzzle are reachable as shown
in [8]. It is easy to see the following two theorems.

Theorem 6 In an (r × s − 2)-puzzle, a configuration is reachable to any configuration with
O(r2s+ rs2) moves.
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Theorem 7 If two configurations of (r×s−2)-puzzle are reachable with k moves then the 2-nets
corresponding to the nonblank tiles are routable in an (r, s, k)-channel with at most 2k−2 bends.

Now we are ready to prove the following.

Theorem 8 If a set of nets N = {N1, N2, . . . , Nν} is routable in a (W,D,H)-channel for some
finite H, then N is also routable in a (W,D,O(τ 2))-channel with O(τ 2) bends.

Proof (Sketch). We distinguish two cases.

Case 1 When each Ni is a 2-net and has terminals both on top and bottom layers: Notice that
ν = Θ(τ). We further distinguish four cases.

Case 1-1 When ν = WD: It is easy to see that N is routable in a 3-D channel of a finite height
if and only if the locations of the terminals on the top and bottom layers are same for every
2-net. Thus N is routable in a 3-D channel of height O(1) with no bend.

Case 1-2 When ν = WD − 1: The routing for this case corresponds to a (W × D − 1)-
puzzle. Thus, if N is routable in a (W,D,H)-channel, then N is also routable in a (W,D,
O(W 2D + WD2))-channel with O(W 2D + WD2) bends by Theorems 3 and 4. Since WD =
ν + 1 = O(τ), N is routable in a (W,D,O(τ 2))-channel with O(τ 2) bends.

Case 1-3 When ν = WD−2: The routing for this case can be reduced to a (W ×D−2)-puzzle.
Thus, N is routable in a (W,D,O(W 2D + WD2))-channel with O(W 2D + WD2) bends by
Theorems 6 and 7. Since WD = ν + 2 = O(τ), N is routable in a (W,D,O(τ 2))-channel with
O(τ2) bends.

Case 1-4 When ν ≤WD−3: LetW ′ = d(ν+2)/De, and η = W ′D−2. Notice that η = O(τ). By
adding η−ν dummy 2-nets, each of which has one terminal on the top layer and the other on the
bottom layer, we have a (W,D,H)-channel with a set of 2-nets, N ′ = {N1, N2, . . . , Nη}, where

Nν+1, Nν+2, . . . , Nη are the dummy 2-nets. For i ∈ [η], let t
〈1〉
i and t

〈2〉
i be the terminals of 2-net

Ni on the top and bottom layers, respectively, and L〈1〉 and L〈2〉 be two layers in the channel.

(See Fig. 6.) Then, we can locate virtual terminals
{

v
〈i〉
1
, v

〈i〉
2
, . . . , v

〈i〉
η

}

on L〈i〉, i ∈ [2], at vertices

with x-coordinate at most W ′ so that a set of virtual 2-nets
{

{t〈i〉j , v
〈i〉
j }|j ∈ [η]

}

is routable in a

(W,D, η)-channel with O(η) bends, i ∈ [2]. (The details are omitted in this extended abstract,

due to space limitation.) Moreover, a set of virtual 2-nets
{

{v〈1〉j , v
〈2〉
j }|j ∈ [η]

}

is routable in

a (W ′, D,O(η2))-channel with O(η2) bends, since this is reduced to Case 1-3. Combining the

routings for virtual 2-nets {t〈1〉j , v
〈1〉
j }, {v〈1〉j , v

〈2〉
j }, and {v〈2〉j , t

〈2〉
j } for each j ∈ [η], we obtain the

routing for N ′ in a (W,D,O(τ 2))-channel with O(τ 2) bends, since η = O(τ).

Case 2 General case: We can easily extend the proof for 2-nets in Case 1 to the general case,
but the details are omitted in this extended abstract, due to space limitation.

3.2 Proof of Theorem 5

It suffices to show the following.
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Theorem 9 If a set of nets N = {N1, N2, . . . , Nν} is routable in a (W,D,H)-channel G, then
N is also routable in G with O(τ 8) bends.

Proof. By Theorem 8, there exists a function f(τ) of O(τ 2) such that if N is routable in a
(W,D,H)-channel then N is also routable in a (W,D, f(τ))-channel with O(τ 2) bends. We
distinguish two cases.

Case 1 H ≥ f(τ): It is clear that N is routable in G with O(τ 2) bends, and we are done.

Case 2 H < f(τ): Let ϕ1, ϕ2, . . . , ϕλ and ψ1, ψ2, . . . , ψλ′ be the increasing sequences of x- and
y-coordinates of terminals, respectively. By definition, a terminal is located at (ϕi, ψj , z), for
some i ∈ [λ], j ∈ [λ′], z ∈ {1,H}, and λ, λ′ ≤ τ . Let ϕ0 = ψ0 = 1, ϕλ+1 = W , and ψλ′+1 = D.

Since N = {N1, N2, . . . , Nν} is routable in G, there exist vertex-disjoint Steiner trees Si for
Ni, 1 ≤ i ≤ ν. Let S = {S1, S2, . . . , Sν}. For each m ∈ [λ+ 1], let GX

m be a subgrid of G induced
by the vertices in {(x, y, z)|ϕm−1 ≤ x ≤ ϕm, y ∈ [D], z ∈ [H]}. If ϕm − ϕm−1 ≥ f(τ), we can
partially reroute S in GX

m so that the number of bends in GX
m is O(τ2) by Theorem 8. Here, the

columns defined by x = ϕm−1 and x = ϕm are considered as the top and bottom layers of a 3-D
channel.

Similarly, for each m′ ∈ [λ′ + 1], let GY
m′ be a subgrid of G induced by the vertices in

{(x, y, z)|x ∈ [W ], ψm′−1 ≤ y ≤ ψm′ , z ∈ [H]}. If ψm′ − ψm′−1 ≥ f(τ), we can partially reroute
S in GY

m′ so that the number of bends in GY
m′ is O(τ2).

For a subgraph H of G, G \ H denotes the induced subgraph of G on V (G) − V (H), i.e.,
the graph obtained from G by deleting all vertices in V (H) and all edges incident to at least
one vertex of V (H). For two graphs H1 and H2, H1 ∪ H2 denotes the graph with vertex set
V (H1)∪ V (H2) and edge set E(H1)∪E(H2). Similarly, H1 ∩H2 denotes the graph with vertex
set V (H1) ∩ V (H2) and edge set E(H1) ∩E(H2).

Let

X =
⋃

{

GX
m|ϕm − ϕm−1 + 1 ≥ f(τ)

}

,
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Y =
⋃

{

GY
m′ |ψm′ − ψm′−1 + 1 ≥ f(τ)

}

,

X = G \ X , and Y = G \ Y. After the reroutings, the total number of bends in X ∪ Y is
O(λτ2 + λ′τ2) = O(τ3). Moreover, the number of bends in X ∩ Y can be bounded by the
number of grid points |V (X ∩ Y)| = O(λλ′f(τ)2H) = O(τ 8). Thus, we conclude that N is
routable with O(τ 8) bends. This completes the proof of Theorem 9.

Example 2 Figure 7 (b) illustrates an example of GX
3 ∪GX

5 ∪GY
2 ∪GY

4 for the terminals shown
in Fig. 7 (a).
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4 Concluding Remarks

The Manhattan model is one of the most popular 2-D channel routing models for practitioners.
Szymanski [14] proved that a decision problem of MANHATTAN 2-D CHANNEL ROUTING
is NP-complete, while the complexity of the problem for 2-nets has been open as mentioned in
[10]. It is interesting to note that 3-D CHANNEL ROUTING is NP-complete even for 2-nets
as we have shown in this paper.

It is worth noting that if the layers are square 2-D grids of area 4ν, the terminals are located
on vertices with even x- and y-coordinates, and each net has terminals both on top and bottom
layers, then any set of ν 2-nets is routable with height O(

√
ν) and O(ν) bends [15]. Moreover,

there is a set of nets that requires 3-D channel of height Ω(
√
ν) to be routed [15].
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