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Abstract: The 3-D channel routing is a fundamental problem on the physical design
of 3-D integrated circuits. The 3-D channel is a 3-D grid G and the terminals are
vertices of GG located in the top and bottom layers. A net is a set of terminals to
be connected. The objective of the 3-D channel routing problem is to connect the
terminals in each net with a Steiner tree (wire) in G using as few layers as possible
and as short wires as possible in such a way that wires for distinct nets are disjoint.
This paper shows that the problem is intractable.
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1 Introduction

The three-dimensional (3-D) integration is an emerging technology to implement large circuits,
and currently being extensively investigated. (See [1, 2, 3, 4, 6, 11, 15, 16] for example.) In this
paper, we consider a problem on the physical design of 3-D integrated circuits.

The 3-D channel is a 3-D grid G consisting of columns, rows, and layers which are rectilinear
grid planes defined by fixing z-, y-, and z-coordinates at integers, respectively. The numbers of
columns, rows, and layers are called the width, depth, and height of G, respectively. (See Fig. 1.)
G is called a (W, D, H)-channel if the width is W, depth is D, and height is H. A vertex of G
is a grid point with integer coordinates. We assume without loss of generality that the vertex
set of a (W, D, H)-channel is {(z,y, z)|z € W],y € [D],z € [H|}, where [n] = {1,2,...,n} for
a positive integer n. Layers defined by z = H and z = 1 are called the top and bottom layers,
respectively.

A terminal is a vertex of G located in the top or bottom layer. A net is a set of terminals
to be connected. A net containing £ terminals is called a k-net. The object of the 3-D channel
routing problem is to connect the terminals in each net with a Steiner tree (wire) in G using as
few layers as possible and as short wires as possible in such a way that Steiner trees spanning
distinct nets are vertex-disjoint. A set of nets is said to be routable in G if G has vertex-disjoint
Steiner trees spanning the nets.

This paper considers the complexity of the following decision problem.

3-D CHANNEL ROUTING
INSTANCE: Positive integers W, D, H, a set of terminals ' C {(z,y,2)|z € [W],y €
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Figure 1: 3-D channel.

[D],z € {1, H}} and a partition of T into nets N1, Na,..., N,,.
QUESTION: Is a set of nets { N1, Na,..., N, } routable in a (W, D, H)-channel?

We have two well-known problems as subproblems of 3-D CHANNEL ROUTING, namely,
PLANAR CHANNEL ROUTING and TWO-ROW CHANNEL ROUTING. These problems can
be stated as follows.

PLANAR CHANNEL ROUTING

INSTANCE: Positive integers W, H, a set of terminals 7' C {(z,1, z)|x € [W],z € {1,H}}
and a partition of 1" into nets Ny, No, ..., N,.

QUESTION: Is a set of nets {Ny, No,..., N, } routable in a (W, 1, H)-channel?

TWO-ROW CHANNEL ROUTING

INSTANCE: Positive integers W, H, a set of terminals 7' C {(z,1, z)|x € [W],z € {1,H}}
and a partition of T into nets Ny, No, ..., N,.

QUESTION: Is a set of nets {Ny, No,..., N, } routable in a (W, 2, H)-channel?

It should be noted that TWO-ROW CHANNEL ROUTING has been known as “UNRE-
STRICTED” TWO-LAYER CHANNEL ROUTING in the literature. The complexity of TWO-
ROW CHANNEL ROUTING is a longstanding open question posed by Johnson [7], while PLA-
NAR CHANNEL ROUTING can be solved in polynomial time as shown by Dolev, Karplus,
Siegel, Strong, and Ullman [5].

The purpose of this paper is to show the following.

Theorem 1 3-D CHANNEL ROUTING is N'P-complete even for 2-nets. [ |

We prove Theorem 1 by showing that 3-D CHANNEL ROUTING is N'P-hard even for 2-nets
in Section 2, and that 3-D CHANNEL ROUTING is in NP in Section 3.

The complexity of TWO-ROW CHANNEL ROUTING is still open. Also, the complexity of
the following problem is open for any fixed integer k > 2.



2.5-D CHANNEL ROUTING

INSTANCE: Positive integers W, H, a set of terminals T C {(z,y, 2)|z € [W],y € [k],2 €
{1, H}} and a partition of T" into nets N1, No, ..., N,.

QUESTION: Is a set of nets {Ny, N, ..., N,} routable in a (W, k, H)-channel?

2 3-D CHANNEL ROUTING is NP-Hard

We show in this section the following theorem.
Theorem 2 3-D CHANNEL ROUGIN is N'P-hard even for 2-ntes. [ |

The 3-D channel routing for 2-nets is closely related to the (r x s — 1)-puzzle defined below.

2.1 (r x s —1)-PUZZLE

The (r x s — 1)-puzzle is a generalization of the well-known 15-puzzle [9]. The (r x s — 1)-puzzle
is played on an r X s board, r, s > 2. There are rs distinct tiles on the board: one blank tiles and
rs — 1 tiles numbered from 1 to rs — 1. Each of the rs square locations of the board is occupied
by exactly one tile. An instance of (r x s — 1)-puzzle consists of two board configurations C' (the
initial configuration) and C’ (the final configuration). A move is an exchange of the blank tile
with a nonblank tile located on a horizontally or vertically adjacent location. The goal of the
puzzle is to find a sequence of moves that transforms C to C’. The configuration C’ is said to
be reachable from C' if there exists such a sequence of moves. Notice that C' is reachable from C
if and only if C is reachable from C’. The configurations C' and C” are said to be reachable with
k moves if there exists a sequence of at most k& moves that transforms C' to C’. Figure 2 shows
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Figure 2: Unreachable configurations of (4 x 4 — 1)-puzzzle.
two unreachable configurations of (4 x 4 — 1)-puzzle. This is the original 15-puzzle of Loyd [9].

Our problem is to find a shortest sequence of moves that transforms C to C’ if C' and C’ are
reachable. The corresponding decision problem is described as follows.

(r x s —1)-PUZZLE



INSTANCE: Two r X s board configurations C' and C’, and a positive integer k.
QUESTION: Are C and C' reachable with k& moves?

Ratner and Warmuth [13] showed the following.
Theorem I (r x s — 1)-PUZZLE is N'P-complete. [ |

While it is intractable to find a shortest sequence of moves that transforms a configuration
to another, we can decide in polynomial time if a given two configurations are reachable, and
we can find a sequence of a polynomial number of moves that transforms a configuration to
another if they are reachable. Let C and C’ be any configurations. We assume without loss of
generality that the blank tile is located at the right bottom position in the both configurations.
Let 7 be a permutation on the nonblank tiles such that 7 (¢) = ¢’ if and only if the location of a
nonblank tile ¢ in C' is the same as the location of a nonblank tile ¢ in C’. Wilson [17] showed
the following.

Theorem II Configurations C and C' are reachable if and only if 7 is even. [ |

The following theorem was shown by Parberry [12] and Kornhauser, Miller, and Spirakis [8].

Theorem IIT In an (n x n — 1)-puzzle, a configuration can be transformed to any reachable
configuration with O(n3) moves. [ |

Theorem III can be easily generalized as follows.

Theorem 3 In an (r x s — 1)-puzzle, a configuration can be transformed to any reachable con-
figuration with O(r%s + rs?) moves. [ |

2.2 Proof of Theorem 2

The (r x s — 1)-puzzle is naturally associated with a 3-D channel routing for 2-nets as follows.
The configurations C' and C’ are corresponding to the top and bottom layers. A terminal is
corresponding to a location of a nonblank tile on C or C’. A pair of locations of a nonblank
tile on C' and C’ is corresponding to a 2-net. For a sequence of moves that transforms C to
C’, locations in the sequences for a nonblank tiles corresponds to a part of the wire connecting
the terminals of the corresponding 2-net. It is easy to see that each of the first and last moves
induces exactly one bend and each of other moves induces exactly two bends. Thus we obtain
the following.

Theorem 4 Configurations C and C' of (r x s —1)-puzzle are reachable with k moves for k > 2
if and only if the 2-nets corresponding to the nonblank tiles are routable in an (r,s, k)-channel
with at most 2k — 2 bends. [ |

Theorem 4 implies a polynomial time reduction from (r x s —1)-PUZZLE to 3-D CHANNEL
ROUGING. Thus we conclude that 3-D CHANNEL ROUTING is N'P-hard by Theorem I. This
completes the proof of Theorem 2.

Example 1 For initial and final configurations C1 and Cy of (4 x 4 —1)-puzzle shown in Fig. 3,
the corresponding 2-nets are shown in Fig. 4. A sequence of 3 moves that transforms Cy to Ca,
and the corresponding 3-D channel routing with height 3 are shown in Fig. 5.
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Figure 3: Initial and final configurations of (4 x 4 — 1)-puzzle.
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Figure 4: Corresponding 2-nets.
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Figure 5: Correspondence between (4 x 4 — 1)-puzzle and 3-D channel routing.

3 3-D CHANNEL ROUTING is in NP

We show in this section the following theorem.



Theorem 5 3-D CHANNEL ROUTING is in N'P. ]

It should be noted that Theorem 5 is not trivial. Let 7 = |T'| and 7; = |N,|, @ € [v]. Since
N = (N1,Ns,...,N,) is a partition of T, 7 = Y7 ;7 > v. The size of representing each
terminal is O(log(W D)), and the size of representing net N; is O(7;log 7). Thus the size of an
instance of the problem is

O (log(WDH) + 7log(WD) + Z 7; log ’T>
i=1
= O(log(WDH)+ 1log(WD)+ 7logT)
= O(rlog(WDr)+1logH).

Suppose N is routable in the (W, D, H)-channel G, and let S; be a rectilinear Steiner tree
connecting the terminals in net N;, and S = {S1,55,...,S,}. Each S; can be represented by
the coordinates of terminals of IV;, Steiner points, and bends of S;, and edges of S;. It should be
noted that the number of Steiner points of S; is at most 7; — 1. Let 3; be the number of bends
of S;, and 8 =>"7 , ;. Then the size of representing S; is Q(3;) and so the size of representing
Sis

Q(Z@-) = Q(p).
i=1

Since (8 can be as large as ©(W DH), the size of representing S can be an exponential in the
instance size if 7 is a polynomial in log(WDH).
On the other hand, the size of representing .5; is

@ <(TZ +53) (log(WDH) + log(T + 6))) ,

and so the size of representing S is

(@) <§V: ((7’Z + ;) <log(WDH) + log(T + ﬁ))))

=1
) ((T + 3)log (WDH (7 + ﬁ)))

Thus, in order to prove Theorem 5, it suffices to show that if A is routable in G, there exists a
routing for N such that 3 is bounded by a polynomial in the instance size.

3.1 Preliminaries

An (r x s — 2)-puzzle has two blank tiles and rs — 2 tiles numbered from 1 to rs — 2. Contrary
to the (r x s — 1)-puzzle, any two configurations in the (r x s — 2)-puzzle are reachable as shown
in [8]. It is easy to see the following two theorems.

Theorem 6 In an (r X s — 2)-puzzle, a configuration is reachable to any configuration with
O(r?s + rs%) moves. [ |



Theorem 7 If two configurations of (r x s—2)-puzzle are reachable with k moves then the 2-nets
corresponding to the nonblank tiles are routable in an (r, s, k)-channel with at most 2k —2 bends.
|

Now we are ready to prove the following.

Theorem 8 If a set of nets N = {Ny, Na,...,N,} is routable in a (W, D, H)-channel for some
finite H, then N is also routable in a (W, D,O(1?))-channel with O(12) bends.

Proof (Sketch). We distinguish two cases.

Case 1 When each N; is a 2-net and has terminals both on top and bottom layers: Notice that
v = O(7). We further distinguish four cases.

Case 1-1 When v = W D: It is easy to see that A/ is routable in a 3-D channel of a finite height
if and only if the locations of the terminals on the top and bottom layers are same for every
2-net. Thus N is routable in a 3-D channel of height O(1) with no bend.

Case 1-2 When v = WD — 1: The routing for this case corresponds to a (W x D — 1)-
puzzle. Thus, if A is routable in a (W, D, H)-channel, then N is also routable in a (W, D,
O(W?2D + W D?))-channel with O(W2D + W D?) bends by Theorems 3 and 4. Since WD =
v+1=0(1), N is routable in a (W, D, O(72))-channel with O(72) bends.

Case 1-3 When v = WD —2: The routing for this case can be reduced to a (W x D —2)-puzzle.
Thus, A is routable in a (W, D, O(W?2D 4 W D?))-channel with O(W?2D + W D?) bends by
Theorems 6 and 7. Since WD = v +2 = O(r), N is routable in a (W, D, O(r?))-channel with
O(7?%) bends.

Case 1-4 When v < WD—-3: Let W’ = [(v+2)/D], and n = W'D—2. Notice that n = O(7). By
adding n—v dummy 2-nets, each of which has one terminal on the top layer and the other on the
bottom layer, we have a (W, D, H)-channel with a set of 2-nets, N’ = {Ny, Na,..., N, }, where
Nyt1,Nuga, ..., Ny are the dummy 2-nets. For i € [}, let t§1> and t§2> be the terminals of 2-net
N; on the top and bottom layers, respectively, and LY and L@ be two layers in the channel.

(See Fig. 6.) Then, we can locate virtual terminals {v§i>,v§i>, . ,U7<7i>} on L% i € [2], at vertices

with z-coordinate at most W’ so that a set of virtual 2-nets {{t§i>,v§-i>}| jE€ [n]} is routable in a
(W, D, n)-channel with O(n) bends, i € [2]. (The details are omitted in this extended abstract,
due to space limitation.) Moreover, a set of virtual 2-nets {{v]<-l>,v]<-2>}\ je [n]} is routable in
a (W', D,O(n?))-channel with O(n?) bends, since this is reduced to Case 1-3. Combining the
routings for virtual 2-nets {t§»l>,v§1>}, {v;»l),v;?)}, and {v;?),té?)} for each j € [n], we obtain the
routing for N’ in a (W, D, O(72))-channel with O(72) bends, since n = O(1).

Case 2 General case: We can easily extend the proof for 2-nets in Case 1 to the general case,
but the details are omitted in this extended abstract, due to space limitation. |

3.2 Proof of Theorem 5

It suffices to show the following.



Figure 6: Strategy of the 3-D routing when v < WD — 3.

Theorem 9 If a set of nets N = {N1,Na,...,N,} is routable in a (W, D, H)-channel G, then
N is also routable in G with O(78) bends.

Proof. By Theorem 8, there exists a function f(7) of O(72) such that if A is routable in a
(W, D, H)-channel then N is also routable in a (W, D, f(7))-channel with O(72) bends. We
distinguish two cases.

Case 1 H > f(7): It is clear that N is routable in G with O(72) bends, and we are done.

Case 2 H < f(7): Let ¢1,p92,...,¢x and ¥1,19, ...,y be the increasing sequences of z- and
y-coordinates of terminals, respectively. By definition, a terminal is located at (¢4, 5, 2), for
some i € [N, j € [N], z€{1,H}, and \,\ < 7. Let oo =9 =1, prp1 =W, and ¥, = D.

Since N' = {N1, Ny, ..., N, } is routable in G, there exist vertex-disjoint Steiner trees S; for
N, 1<i<v.LetS={S,5,...,8,}. Foreach m € [\ + 1], let GX be a subgrid of G’ induced
by the vertices in {(z,y, 2)|om—1 < = < pm,y € [D],z € [H]}. If o — pm—1 > f(7), we can
partially reroute S in G;X so that the number of bends in G2 is O(72) by Theorem 8. Here, the
columns defined by z = ¢,,,—1 and x = ¢,, are considered as the top and bottom layers of a 3-D
channel.

Similarly, for each m’ € [N +1], let Gnyl, be a subgrid of G induced by the vertices in
{(z,y,2)|x € W], ¥0mr—1 <y < Y,z € [H]}. If Yy — Ypy—1 > f(7), we can partially reroute
S in GY, so that the number of bends in GY, is O(7?).

For a subgraph H of G, G\ H denotes the induced subgraph of G on V(G) — V(H), i.e.,
the graph obtained from G by deleting all vertices in V(H) and all edges incident to at least
one vertex of V(H). For two graphs H; and Hy, H; U H denotes the graph with vertex set
V(H1) UV (H3) and edge set E(H1)U E(Hs). Similarly, H; N Hy denotes the graph with vertex
set V(H1) NV (H2) and edge set E(H;y) N E(Hs).

Let



y == U{G%’W)m’ _wm’—l +1 > f(T)},

X =G \ X, and Yy =G \ V. After the reroutings, the total number of bends in X U ) is
O\T? + XN72) = O(r3). Moreover, the number of bends in X N'Y can be bounded by the
number of grid points [V (X NY)| = OON f(7)2H) = O(7®). Thus, we conclude that N is
routable with O(78) bends. This completes the proof of Theorem 9. [ |

Example 2 Figure 7 (b) illustrates an example of G5 UGX UGY UGY for the terminals shown
in Fig. 7 (a).

o
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(a) 7; and ¢; in G. (b) G UGX UGY UGY.

Figure 7: x- and y-coordinates, and subgrids of G.

4 Concluding Remarks

The Manhattan model is one of the most popular 2-D channel routing models for practitioners.
Szymanski [14] proved that a decision problem of MANHATTAN 2-D CHANNEL ROUTING
is N'P-complete, while the complexity of the problem for 2-nets has been open as mentioned in
[10]. It is interesting to note that 3-D CHANNEL ROUTING is N'P-complete even for 2-nets
as we have shown in this paper.

It is worth noting that if the layers are square 2-D grids of area 4v, the terminals are located
on vertices with even z- and y-coordinates, and each net has terminals both on top and bottom
layers, then any set of v 2-nets is routable with height O(1/v) and O(v) bends [15]. Moreover,
there is a set of nets that requires 3-D channel of height Q(4/v) to be routed [15].
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